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Abstract

In this article we present the BlackHat program library for the evaluation
of QCD one-loop matrix elements. The library, written in C++, uses the
unitarity method to evaluate the virtual matrix element. This first public
release currently supports a variety of processes with up to four final-state
QCD partons or electroweak bosons.
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Computer:
Operating system: Linux
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Classification:
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Nature of problem: Calculation of one-loop amplitudes and virtual contributions
to squared matrix elements for high-multiplicity final states at colliders

Solution method: C++ implementation of the unitarity method

1. Introduction

This document introduces the BlackHat code library [1, 2, 3], which
computes the one-loop amplitudes in QCD required for a variety of next-
to-leading order (NLO) predictions of Standard-Model processes. We give
a brief overview of its capabilities, explain how to use it, how its external
interface is structured, and how to install it. We also give some brief examples
of its use in different contexts.

Theoretical predictions of Standard-Model processes for colliders require
calculations at NLO in order to achieve a basic quantitative reliability [4].
Such predictions are essential to the physics program at the LHC, and in
particular to obtaining a quantitative understanding of backgrounds to po-
tential physics beyond the Standard Model, as well as to a program of pre-
cision measurements of Standard-Model resonances such as the top quark
and the recently discovered heavy boson [5, 6]. For over two decades, NLO
calculations have been carried out at parton-level to fixed order in pertur-
bation theory, both inclusively and exclusively in the number of jets. In
the past decade, fixed-order predictions have been matched to parton show-
ers at NLO accuracy, resulting in NLO hadron-level event generators [7, 8].
In the past year, it has become possible to maintain the NLO accuracy for
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hadron-level events containing additional jets, within the same merged event
sample [9, 10].

NLO calculations require a number of different ingredients, including
the same squared tree-level matrix elements required for leading-order (LO)
calculations, but to one higher multiplicity, and virtual corrections to the
squared matrix elements. The latter require the computation of one-loop am-
plitudes. The BlackHat code library performs such one-loop computations.
It can be applied both to fixed-order NLO calculations and to parton-shower
simulations matched to NLO accuracy.

2. Processes

The present release of the BlackHat library can compute the virtual
contributions to the squared matrix elements for the following processes [2,
3, 11, 12, 13],

• jj → n j n = 2, 3, 4

• jj → W (→ lν) + n j , n = 0, ..., 3

• jj → γ + n j , n = 1, ..., 3

• jj → Z/γ∗(→ e+e−) + n j , n = 0, ..., 3

where j represents either a gluon, a quark, or an antiquark. The vector
bosons W and Z decay to a pair of massless leptons, retaining all spin corre-
lations and all effects due to the boson width. The partonic processes above
involving the Z boson can be crossed to obtain the virtual contributions to the
squared matrix elements needed for e+e− collisions. The library is designed
to be extended to additional processes, and to higher multiplicities [14, 15].

These partonic subprocesses enable the NLO computation of the following
processes at the LHC,

• pp→ n jets , n = 2, 3, 4

• pp→ W (→ lν) + n jets , n = 0, ..., 3

• pp→ γ + n jets , n = 1, ..., 3

• pp→ Z/γ∗(→ e+e−) + n jets , n = 0, ..., 3
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3. Method and Implementation

The BlackHat library applies on-shell methods [16, 17, 18, 19, 20, 21,
22, 23, 24, 25], in particular the unitarity method, to the computation of one-
loop amplitudes. (For recent reviews see refs. [26, 27, 28].) It first computes
primitive amplitudes for each non-vanishing helicity configuration of exter-
nal particles. It assembles these into complete color-ordered amplitudes, and
then sums the interference of each one-loop helicity amplitude with the con-
jugate tree amplitude over colors. The color sum is carried out as a full color
sum, or restricted to contributions leading in the number of colors; the choice
is specified by the user. The leading-color sum typically provides an excellent
approximation to the full result, at much lower cost in computer time. In a
fixed-order calculation, the difference (the subleading-color contribution) can
be computed to lower statistical accuracy because its overall contribution is
much smaller.

Each primitive amplitude is expressed as a sum over Feynman integrals
multipled by coefficients, with an added integral-free contribution (the ‘ratio-
nal’ contribution). The integrals are given by analytic formulæ. For ampli-
tudes with two incoming partons and up to three final-state objects (partons
or electroweak bosons), we have implemented fully analytic formulæ for the
integral coefficients and the additional rational terms. For four or more final-
state objects, these coefficients are computed numerically from products of
tree amplitudes. The required tree amplitudes are computed numerically us-
ing on-shell recursion relations [21] or using analytic formulæ derived from
N = 4 supersymmetric gauge theory [29].

While performing numerical calculations of coefficients or additional terms,
the BlackHat library carries out numerical consistency checks on individual
terms [1, 15]. When a term fails such a consistency check, it is recomputed
at higher working precision using the qd library.

The BlackHat library returns the one-loop virtual contributions to the
squared matrix element, divided by the corresponding tree-level squared ma-
trix element and certain prefactors, and also stripped of both strong and
electroweak couplings,

d̂σ
(1)

V ≡
1

8παS cΓ(ε)

dσ
(1)
V

dσ(0)
, (1)

where dσ(0) is the fully-differential tree-level squared matrix element, dσ
(1)
V is

the real part of the fully differential interference of the one-loop and tree-level

4



matrix elements, and

cΓ(ε) =
1

(4π)2−ε
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
. (2)

The library takes the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing
matrix to be diagonal. At present, certain small contributions (top-loop
contributions, including the residual top-bottom axial-loop, and with one
exception1, all quark-loop contributions with the Z coupling directly to the
quark loop) are omitted (see refs. [20, 11, 15] for more details.)

4. Usage

The BlackHat library will most typically be used inside a larger pro-
gram. A user seeking to construct such a program will need to understand
how to install BlackHat, how to interface to it from within his or her code,
and how to link the BlackHat library. The standard interface model uses
the Binoth Les Houches Accord (BLHA) [30]. A user seeking to run a pro-
gram constructed using this interface, or the dedicated SHERPA [31] one,
will need to know how to install BlackHat and how to run the code. Public
versions of SHERPA starting with version 2.0.β include a built-in interface to
BlackHat modeled on BLHA. Interactive calls to the BlackHat library,
intended for testing, can be made using the python interface.

In this section, we explain how to use the BlackHat interface to SHERPA;
we explain usage in a C++ program in sect. 5; that in a FORTRAN program
in sect. 6; and that of the python interface in sect. 7. We give installation
instructions for the BlackHat library in sect. 9. We give an overview of
the BLHA interface in sect. 10.

To use BlackHat within SHERPA, the user must install both Black-
Hat and SHERPA. He or she has two options for how to do this, as described
more fully in sect. 9: install BlackHat, and then configure SHERPA to use
it; or install SHERPA, and then build BlackHat to be plugged in.

SHERPA will perform an NLO calculation when the following lines are
added to the process declaration section in the run-control file Run.dat, in
between the Process and End process lines,

1The vector-current light-quark loops are included in Z + 2-jet production; they are
intrinsically absent at NLO in Z + 1-jet production.
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Loop_Generator BlackHat;

NLO_QCD_Mode 〈mode〉;
NLO_QCD_Part BVIRS;

The mode variable in the second of these lines should be set to 1 for a fixed-
order NLO calculation, and to 3 for an NLO-matched parton-shower calcu-
lation. In the former case, SHERPA will switch off the shower by default. In
the latter case, SHERPA will enable the shower by default.

The color summation performed for the virtual contribution, discussed in
the previous section and explained more fully in sect. 11, can be controlled
by a

Subdivide_Virtual 〈color mode〉;
line in the Process section. The color mode variable can take one of three val-
ues: FullColor (the default), LeadingColor, and FullMinusLeadingColor.

5. Example: Linking to a C++ Program

A C++ program calling the BlackHat library will use two interface rou-
tines, OLP Start and OLP EvalSubProcess. The program can either include
the header file BH LH Interface.h, or must specify an extern declaration for
the two interface routines, as shown in the example below. Before evaluat-
ing any amplitudes, the interface must be initialized with a specific contract
using OLP Start. The interface is specified by the BLHA, which we shall
explain in greater detail in sect. 10. The contract is embodied in a file which
must be supplied to OLP Start. The result for a given subprocess is re-
turned by OLP EvalSubProcess. As explained earlier, this routine computes
the interference of the one-loop amplitude with the tree-level amplitude. In
principle, the contract file controls whether the quantities computed are to
be summed over colors and helicities; in the present release, summation over
helicities is the only supported option. A complete sum over colors, a sum
restricted to leading-color contributions, or the difference of these two, are
the only options currently supported for the color sum. Currently, the only
supported return formats are those corresponding to eq. (1), where results
are normalized by the squared tree-level amplitude and other prefactors, and
stripped of strong and electroweak couplings, which must be multiplied in
by the caller. The results are separated into different terms in the Laurent
expansion in the dimensional regulator ε, where D = 4−2ε. The two routines
have the following calling conventions,
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OLP_Start(const char *filename, int *success)

filename the name of the contract file
success will be set to 1 if the contract is valid

OLP_EvalSubprocess(int *process_id, double *momenta,

double *renormalization_scale,

double *parameter_list,

double *result)

process id the id of the desired subprocess, as given in the contract file
momenta an array of momenta, each containing a four-vector and

a mass
renormalization scale the renormalization scale in GeV
parameter list an array of couplings and other parameters (ignored

as BlackHat returns normalized values)
result an array of four doubles, containing the results for the 1/ε2,

the 1/ε, and the ε0 terms of the virtual part of the squared matrix
element, normalized as in eq. (1); the last element is set to 1

The following program gives an example of usage of these two routines,

#include <iostream>

using namespace std;

extern "C" {

extern void OLP_EvalSubProcess(int* Label,double* Momenta,double *mu,double *parameters,double *result);

extern void OLP_Start(const char* filename,int *status);

}

int main(){

int success;

OLP_Start("contract_file.lh",&success);

if (success != 1) { return 1; }

double result[4];

double parameters[]={1.0,1.0};

double momenta[]={

// E x y z m

500.0, 0.0, 0.0, 500.0, 0.0,

500.0, 0.0, 0.0, -500.0, 0.0,
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500.0, 0.0, -500.0, 0.0, 0.0,

500.0, 0.0, 500.0, 0.0, 0.0,

};

double mu=500; //

int label=1;

OLP_EvalSubProcess(&label,momenta,&mu,parameters,result);

cout << "1/e^2 : " << result[0] << endl;

cout << "1/e : " << result[1] << endl;

cout << "finite: " << result[2] << endl;

}

The program should be compiled and linked with the aid of the blackhat-config
script,

g++ -c -o cpp_program.o cpp_program.cpp

ld cpp_program.o ‘blackhat-config --libs‘

An example program is present in the examples directory of the BlackHat
distribution (which is copied to the share/blackhat/examples directory
upon installation). We discuss an example of a contract file in sect. 10.

6. Example: Linking to a FORTRAN Program

Calling the BlackHat library from within a FORTRAN program is similar
to calling it from within a C++ program; the routine OLP Start must be
called to initialize the library, and OLP EvalSubProcess is then called to
evaluate virtual contributions. No include file is necessary.

program fortran_example

implicit none

integer i,nexternal,status,label

parameter (nexternal=4)

double precision pmass(nexternal),p(0:4,nexternal)

character*16 filename

double precision couplings(2),mu,virt_wgts(4)

data (p(i,1),i=0,4)/ 0.5000000E+02 , 0.0000000E+00 ,
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& 0.0000000E+00 , 0.5000000E+02 , 0.0000000E+00 /

data (p(i,2),i=0,4)/ 0.5000000E+02 , 0.0000000E+00 ,

& 0.0000000E+00 ,-0.5000000E+02 , 0.0000000E+00 /

data (p(i,3),i=0,4)/ 0.5000000E+02 , 0.1109243E+02 ,

& 0.4448308E+02 ,-0.1995529E+02 , 0.0000000E+00 /

data (p(i,4),i=0,4)/ 0.5000000E+02 ,-0.1109243E+02 ,

& -0.4448308E+02 , 0.1995529E+02 , 0.0000000E+00 /

filename = "contract_file.lh"

mu =100d0

label=1

call OLP_Start(filename//CHAR(0),status)

call OLP_EvalSubprocess(label,p,mu,couplings,virt_wgts)

write, virt_wgts

return

end

A FORTRAN program should be linked to the C libraries in addition to
the BlackHat library, as follows,

gfortran -c -o fortran_example.o fortran_example.f

ld fortran_example.o ‘blackhat-config --libs‘ -lc -lstdc++

An example program is present in the examples directory of the BlackHat
distribution (which is copied to the share/blackhat/examples directory
upon installation).

Because FORTRAN is case-insensitive, different compilers have different
conventions for naming functions in object files. Some compilers add trailing
and/or leading underscores, some capitalize names, whereas other compilers
convert names to lower case. We have tried to accomodate all conventions of
which we are aware. We encourage readers to inform one of the corresponding
authors of any conventions we have missed.

7. Python interface

The BlackHat library can also be called from python, using an imple-
mentation of the BLHA interface described in greater detail in sect. 10. To
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enable this interface, the BlackHat configure script should be run with
the --enable-LHpythoninterface option before building the library. This
option creates a python module called BHLH, which must be loaded. (The
BlackHat installation directory must be in the python search path, and
the BlackHat library must be in the linker’s search path.) The module
provides the following functions,

• SignContract(orderFileName,contractFileName) reads an order file,
specified by orderFileName, in BLHA format [30] and writes the cor-
responding contract file to a file specified by contractFileName. The
filenames may be either absolute or relative to the current working
directory.

• Init(ContractFileName) initializes the library for use with the con-
tract file named in the argument.

• BHLH.EvalSubprocess(id,momenta,mu,alphas,alphaEW) evaluates the
virtual correction for the process with the given id in the contract file.
The momentum arguments are given by momenta, and the scale is set
to mu. The remaining arguments alphas and alphaEW are present for
compatibility, but are ignored by BlackHat, as all results returned
are stripped of coupling factors. Each momentum must be a five-tuple,
with entries (Energy, x-, y-, z-components of the momentum, mass).
The function returns a four-tuple containing as its first three entries the
1/ε2, the 1/ε, and the ε0 terms in the virtual correction to the squared
matrix element (the interference of the one-loop amplitude with the
tree-level amplitude), divided by the squared tree-level matrix element.
The last entry is set to 1.

The following code fragment gives an example of BlackHat use from
within python,

import BHLH

BHLH.SignContract(’order_file.lh’,’contract_file.lh’)

BHLH.Init(’contract_file.lh’)

momenta=[

# E x y z m

1, 0, 0, 1, 0,

10



1, 0, 0,-1, 0,

1, 0, 1, 0, 0,

1, 0,-1, 0, 0

]

double,single,finite,tree=BHLH.EvalSubprocess(1,momenta,10,0,0)

print ’A=%s/eps^2 + %s/eps + %s’ % (double,single,finite)

An example program is present in the examples directory of the BlackHat
distribution (which is copied to the share/blackhat/examples directory
upon installation).

8. Detailed SHERPA Examples

The following run-control file directs SHERPA to perform a parton-level
NLO calculation of inclusive W production at 8 TeV in pp collisions using
the BlackHat library:

(run){

# technical parameters

ME_SIGNAL_GENERATOR Amegic BlackHat;

EVENT_GENERATION_MODE W;

# physics parameters

BEAM_1 2212; BEAM_ENERGY_1 4000;

BEAM_2 2212; BEAM_ENERGY_2 4000;

}(run);

(processes){

Process 93 93 -> 11 -12;

NLO_QCD_Mode 1; NLO_QCD_Part BVIRS;

Loop_Generator BlackHat;

Scales VAR{sqr(80.419)};

Order_EW 2;

End process;

}(processes);

The renormalization and factorization scales are set to the W mass, taken
here to be 80.419 GeV. The lines containing the Loop Generator, NLO QCD Mode,
and NLO QCD Part commands switch on the NLO aspects of the calculation,
as discussed in sect. 4. We refer the user to the SHERPA manual located at
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http://sherpa.hepforge.org/doc/SHERPA-MC-1.4.2.html for a descrip-
tion of the control lines not discussed in sect. 4. SHERPA should be run
with this control file in a standard fashion. This example file is present in
the examples directory of the BlackHat distribution (which is copied to
the share/blackhat/examples directory upon installation).

A similar but more complicated example is offered by the following run-
control file, which directs SHERPA to perform a parton-level NLO calcula-
tion of inclusive W+ + 2-jet production at 8 TeV in pp collisions using the
BlackHat library:

(run){

# technical parameters

ME_SIGNAL_GENERATOR Amegic Comix BlackHat;

EVENT_GENERATION_MODE W;

DIPOLE_ALPHA 0.03;

# physics parameters

BEAM_1 2212; BEAM_ENERGY_1 4000;

BEAM_2 2212; BEAM_ENERGY_2 4000;

SCALES VAR{sqr(sqrt(H_T2)-PPerp(p[2])-PPerp(p[3])+MPerp(p[2]+p[3]))};

}(run);

(processes){

### The Born, virtual and integrated subtraction piece

Process 93 93 -> 11 -12 93 93;

NLO_QCD_Mode 1; NLO_QCD_Part BVI;

Loop_Generator BlackHat;

Order_EW 2;

End process;

### The real emission piece and subtractions

Process 93 93 -> 11 -12 93 93;

NLO_QCD_Mode 1; NLO_QCD_Part RS;

ME_Generator Comix;

Order_EW 2;

End process;

}(processes);

(selector){

FastjetFinder antikt 2 20 0 0.4;

}(selector);
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This example uses Ĥ ′T , defined in ref. [14] for both the renormalization and
factorization scales. It makes use of the anti-kT algorithm [32] to define
jets, using the FastJet library [33, 34]. In order to use this library, the
--enable-fastjet=〈path to FastJet〉 option must be give to the configure
script when installing SHERPA.

9. Installation

Installation of the BlackHat code library proceeds as follows:

1. Install the qd library from its distribution page,

wget http://crd.lbl.gov/~dhbailey/mpdist/qd-2.3.13.tar.gz

unzip, untar, and follow the package’s installation instructions. Use
the configure option:

--enable-shared

Make sure that the shared libraries have been built before attempting
to install qd. In this regard, note that the qd build scripts may look for
a C++ compiler other than g++, and depending on which one is chosen,
the qd build may fail to build the shared libraries. If the scripts select a
compiler other than g++, one should specify the use of g++ (or another
compiler which supports shared libraries) explicitly using the additional
argument CXX=g++ on the configure command line.

2. Install the BlackHat library from its distribution page,

wget http://www.hepforge.org/downloads/blackhat/blackhat-1.0.0.tgz

Extract the sources,

tar -xzf blackhat-1.0.0.tar.gz

cd blackhat-1.0.0

Configure using the following options (in addition to standard options
such as --prefix if required):

--enable-sherpaplugin=〈path to SHERPA〉
compiles the BlackHat SHERPA
plugin

--with-QDpath=prefix if the qd library is installed in a
non-standard place

--enable-LHpythoninterface compiles the python interface
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The installation path can be chosen using the standard configure

option --prefix=〈installation path〉.
3. Build the BlackHat library by executing make in the working direc-

tory (from which the configure script was run).

4. Install the BlackHat library by executing make install.

As mentioned earlier in sect. 4, in order to use BlackHat with SHERPA,
both must be installed. There are two ways of doing this2 ,

1. Install the BlackHat library, and then build a post-2.0.β version of
SHERPA, using the configure option --enable-blackhat=〈top-level
BlackHat installation path〉 in building the latter. The user then
runs SHERPA without any special command-line arguments, but with
additional lines in SHERPA run-control file Run.dat as described in
sect. 4;

2. Install a post-2.0.β version of SHERPA, and then install the Black-
Hat library, using the configure option --enable-sherpaplugin, as
explained above. When running SHERPA, the user must then either
supply an additional command-line argument,

SHERPA_LDADD=BH_Sherpa_Interface

or add an additional line of the same form to the SHERPA run-control
file Run.dat, along with additional lines in the run-control file as de-
scribed earlier in sect. 4. The BlackHat library name as given should
not include the leading lib or trailing .so; the library must be in the
user’s library search path (usually $LD LIBRARY PATH; the required di-
rectory is in the line returned by the blackhat-config script described
below)

Once the installation is complete, there will be a bin directory in the
BlackHat installation directory. It contains three programs,

1. blackhat-config is a tool used in compiling and linking programs using
the BlackHat library,

• blackhat-config --libs returns a set of compiler or linker flags
adding the path where the libraries are installed,

2In principle, there is a third option, using external BLHA order and contract files,
but there is no real advantage over the native implementations described above, and a
description of this option is beyond the scope of the present document.
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• blackhat-config --include returns a set of compiler flags adding
the path where the header files are installed.

2. LH reader reads BLHA order files and then creates contract files, as
described below in sect. 10,

LH reader order file name contract file name

3. dataInstall is a simple script that installs data files for the evaluation
of processes. When a new process within the classes listed in sect. 2
becomes available, the corresponding data files should be installed to
activate them.

10. Interface

BlackHat supports the BLHA interface mechanism described in ref. [30].
We review the essential elements here; you are encouraged to read the just-
cited reference for further details.

The mechanism envisages two codes collaborating to calculate NLO cor-
rections for a given process or set of processes. The first code — here called
the One-Loop Provider (OLP) — computes the virtual corrections to squared
matrix elements, and supplies them to another code, here called the User (U)
program, which supplies the phase-space points at which evaluations of the
virtual corrections are required. The U program is typically a parton-level
integrator or a parton-shower Monte Carlo, but the code model is more gen-
eral.

The mechanism has two stages, in order to be compatible with code-
generating programs. In the first phase, the two codes exchange information
about parameters and capabilities. Only in the second stage do the codes
perform actual calculations. In more detail, in the first stage the U program
puts a list of all subprocesses for which virtual corrections are required into
an order file, along with various options for what precise quantities are to be
calculated, and how the calculations are to be performed. Some options are
present in the BLHA standard, while others are BlackHat-specific. The
OLP reads the order file, and if it can provide all requested calculations in
the requested manner, writes out information that the U program will need
in order to perform the calculation for each and every subprocess requested.
The OLP writes this information in a contract file. This file is then used to
initialize the OLP at the beginning of the second phase.

The following excerpt is an example of an order file,
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# BLHA options

MatrixElementSquareType CHsummed

CorrectionType QCD

MassiveParticleScheme OnShell

IRsubtractionMethod None

OperationMode NormalizedByBorn

SubdivideProcess No

IRregularisation CDR

# BH options

Z_mass 91.1876

W_mass 80.385

Z_width 2.4952

W_width 2.085

COLOR_MODE full_color

# Processes required

11 -11 -> 1 -1

11 -11 -> 1 -1

At the end of the first stage, BlackHat then returns the following con-
tract file,

# BLHA options

MatrixElementSquareType CHsummed | OK

CorrectionType QCD | OK

MassiveParticleScheme OnShell | OK

IRsubtractionMethod None | OK

OperationMode NormalizedByBorn | OK

SubdivideProcess No | OK

IRregularisation CDR | OK

# BH options

Z_mass 91.1876 | OK

W_mass 80.385 | OK

Z_width 2.4952 | OK

W_width 2.085 | OK

COLOR_MODE full_color | OK
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# Processes required

11 -11 -> 1 -1 | 1 1

11 -11 -> 1 -1 | 1 2

#

# options

#

# MatrixElementSquareType: CHsummed

# CorrectionType: QCD

# IRregularisation: CDR

# IRsubtractionMethod: None

# MassiveParticleScheme: OnShell

# OperationMode: NormalizedByBorn

# SubdivideProcess: No

#

The BlackHat library currently supports the following BLHA options and
values

MatrixElementSquareType currently, only CHsummed (color- and helicity-
summed) is supported

CorrectionType currently, only QCD is supported

MassiveParticleScheme currently, only OnShell is supported

IRsubtractionMethod currently, only None is supported

SubdivideProcess currently, only No is supported

IRregularisation CDR (conventional dimensional regularization) and tHV

(’t Hooft–Veltman) are supported

OperationMode currently, only NormalizedByBorn, specifying that results
are returned according to eq. 1. Modifying the color sum should be
done via the BlackHat option Color Mode, described below.

The following options are not currently supported or are ignored

ModelFile

SubdivideSubprocess
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In addition, the BlackHat library also supports the additional options,

Z mass Mass of the Z boson in GeV

Z width Width of the Z boson in GeV

W mass Mass of the W boson in GeV

W width Width of the W boson in GeV

sin th 2 The value of sin2θW

Color Mode Currently, three options are supported for computations with
with four or more final-state objects: FullColor, which specifies that
the return values comes from a complete color sum of the virtual intef-
erence; LeadingColor, which restricts the color sum to terms leading
in the number of colors; and FullMinusLeadingColor, which specifies
that the return value includes only subleading-color terms, precisely
those not included in the LeadingColor return value

11. Efficiency Considerations

The computation of one-loop corrections is considerably more demanding
of computer resources than that of the basic squared matrix elements needed
for an LO estimate. (The computation of real-emission corrections is likewise
much more computationally demanding.) This makes it worthwhile to con-
sider approximations to, or decompositions of, the virtual corrections that
retain all essential physics to high accuracy but reduce the computational
load signficantly.

At present, the BlackHat library supports one decomposition and asso-
ciated approximation that can reduce the computational effort by an order of
magnitude in processes with four or more final-state objects. (The decompo-
sition is not currently supported for processes with fewer final-state objects,
where it isn’t needed for efficiency purposes.) This is the decomposition of
the virtual corrections into terms that are leading in the number of colors,
and terms that are subleading. (The decomposition refers to the scaling in
a theoretical limit where the number of colors, Nc = 3 in QCD, is taken to
infinity.) Such a decomposition is not unique; the form currently adopted in
BlackHat is described in refs. [35, 13].
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The leading-color approximation for the virtual contributions can be used
in both fixed-order and NLO-matched parton-shower calculations. One ex-
pects the remaining subleading-color contributions to be of O(10%) in QCD.
For W,Z + n-jet production with up to three jets, this approximation is
considerably better: it is known to be valid to 3% once all contributions are
combined into a total cross section [35, 3].

In fixed-order calculations, one can use the decomposition to greatly re-
duced the required computer time for a calculation even without making any
approximation. One calculates the leading-color and subleading-color virtual
contributions separately; because the subleading-color contributions give a
small contribution, they can be computed with much lower statistics. Typi-
cally, their computation for a given phase-space point is much lengthier than
that of the leading-color ones, so this reduction greatly reduces the overall
computer time.

In a similar way, splitting up the computation of the different contri-
butions (Born, virtual, integrated subtraction terms, and subtracted real-
emssion) within a fixed-order computation using SHERPA also offers the user
the possibility of varying the number of phase-space points used according
to both the computer time and the estimated statistical error. (The quan-
tity to minimize is σ

√
τ , where τ is the computer time, and σ the statistical

error.) As an example, in the study of W + 3-jet production [2, 3], we used
2 · 106 phase-space points for the leading-color virtual contributions, 105 for
the subleading ones, and 107 for both the born and subtracted real-emission
contributions.

12. LHreader

The LHreader program is part of the BlackHat package. It can be used
to generate BLHA contract files. It takes two command-line arguments, the
names of the input order file and the output contract file. If the contract file
exists, it will be overwritten,

LHreader order_file.lh contract_file.lh

13. Validation

We have applied a variety of cross checks to ensure the correctness of
the amplitude results produced by the BlackHat library. A subset of the
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tests are included in the release, and may be used to validate the installation
of the library. The tests include comparisons against published analytic re-
sults for lower-point amplitudes; comparisons against other one-loop codes;
collinear-factorization tests; comparisons of results using different algorithms;
and comparisons against higher-precision results. In addition to cross checks
of the matrix elements, we compared cross sections after high-statistics inte-
grations over phase space.

We have compared numerical results for primitive amplitude from Black-
Hat against available analytic expressions from published results. We have
compared most amplitudes with up to three final-state objects, and a selec-
tion of amplitudes with four final-state objects. All these comparisons show
agreement. We have also made sure that all infrared singularities give the
expected pole structure [36] for the double and single poles in the dimen-
sional regulator ε. We used Catani–Seymour dipoles [37] implemented as in
SHERPA [31, 38, 39] for this numerical check.

We have also compared the virtual corrections to results from other one-
loop codes (in particular: HELAC-1Loop [40, 41], and Rocket [42] with
S. Frixione’s help) at selected phase-space points. This includes all sub-
processes for W,Z+3-jet and four-jet production. Badger et al. have also
compared four-jet matrix elements at selected phase-space points. The re-
sults agree, which serves to increase confidence in all codes in any given
comparison, as it is unlikely that errors would give identical discrepancies on
both sides of a comparison.

We have checked the collinear limits of BlackHat amplitudes exten-
sively. In collinear limits, amplitudes are related to lower-point amplitudes
multiplied by universal splitting amplitudes. In each case, we compute the
original n-point amplitude and the collinear approximation using the split-
ting and (n − 1)-point amplitudes at a sequence of points approaching the
collinear limit. We compute both with a very large number of digits (roughly
one thousand decimal digits, using a private version), in order to avoid ef-
fects of round-off error and potential numerical instabilities. The numerical
convergence of the result to the approximation in the limit (checked to 35
decimal digits for the integral-containing terms, and 15 digits for the ampli-
tude as a whole) is a very strong consistency check on the original n-point
amplitude, as many different terms in the numerical computation have to
combine in the right way to obtain the correct collinear behavior. We then
repeat this check for the (n − 1)-point amplitude, looking at its collinear
limits. We performed these tests for randomly-chosen collinear-approaching
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sets of momenta. We do not restrict them to kinematic sectors corresponding
to 2→ n scattering, but include other regions such as 3→ n− 1 scattering,
and so forth.

For example, we have compared the collinear limits of six-gluon ampli-
tudes to five-gluon amplitudes, and collinear limits of five-gluon amplitudes
to four-gluon amplitudes. This chain,

6 g → 5 g → 4 g, (3)

checks the consistency of an entire family of scattering amplitudes.
Certain contributions (the so-called ‘rational terms’) can be computed us-

ing two entirely different approaches within the framework of on-shell meth-
ods: on-shell recursion [21, 22] and D-dimensional unitarity [18, 19, 24, 25].
Independent terms in the two approaches are entirely unrelated. We have
compared results obtained using the two different approaches for a variety of
amplitudes. The agreement between the results validates the code for both
approaches, as again it would be essentially impossible for both codes to
produce the same erroneous results.

We have also confirmed the numerical stability of results produced by the
library. To do so, we compared values of the virtual corrections to reference
evaluations using a much larger number of digits (roughly 60 decimal digits).
In 99% of randomly-chosen phase-space points, we find agreement to better
than five digits. These checks also validate the instability-detection and
-repair system discussed in sect. 3.

We have published total and differential cross sections for all process
families provided [2, 3, 14, 11, 15, 12, 43, 13]. Several results have since been
validated by other collaborations [42, 44]. In addition, we have compared
the W,Z+2-jet cross sections to results from MCFM [45].

The BlackHat tarball includes a basic set of tests that allow the user
to validate an installation. These tests may be found in tests. To run them,
issue the command

make check

Some of the tests are quite lengthy.
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